Welcome to Canopy's interactive data-analysis environment!


Kernel running in the 'User' environment.


Pylab is active using TkAgg.


Python 3.5.2 |Enthought, Inc. (x86)| (default, Mar 2 2017, 16:37:47) [MSC v.1900 32 bit (Intel)]

Type "copyright", "credits" or "license" for more information.


IPython 5.3.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.


In [9]: # -*- coding: utf-8 -*-

   ...: #-----(1) data analysis of agriculture sector -----

   ...:

   ...: import numpy as np

   ...: import pandas as pd

   ...: import matplotlib.pyplot as plt

   ...: import random

   ...:

   ...: df = pd.read_csv ('C:/Users/Jeet Das/Desktop/Major Project - Indian Economy/Project ( Section 1-Indian Economy)/Section-1_Data_sheet/(02)_agriculture.csv',encoding="cp1252")

   ...:

   ...: print("\n------- output data :-----------\n")

   ...: print("Agriculture data analysis:")

   ...:

   ...: # Question – A : get row and column numbers

   ...:

   ...: def dimension():

   ...: print('---------------------------------------------')

   ...: print("Dimension of the data frame = ",df.shape)

   ...: print('---------------------------------------------')

   ...:

   ...: # Question – B : print column names :

   ...:

   ...: def column_names():

   ...: print('Column names as follows :')

   ...: print('---------------------------------------------')

   ...: count = 1

   ...: for col in df.columns:

   ...: print(count,"-->",col)

   ...: count = count+1

   ...: print("---------------------------------------------\n")

   ...:

   ...: #Question – C : State_Name (using GROUP BY method) and no. of states :

   ...:

   ...: def states():

   ...: state_names = df.groupby(['State_Name'])[['District_Name']].count()

   ...: print("\t states names : ")

   ...: print("-------------------------------")

   ...: print(state_names)

   ...: print("-------------------------------")

   ...: count = 0

   ...: for row in range(len(state_names)):

   ...: count = count+1

   ...: print("total no. of states = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state - 1 : Andaman and Nicobar Islands

   ...: df_andaman = df[df.State_Name == 'Andaman and Nicobar Islands']

   ...:

   ...: # state -2 : Andhra Pradesh

   ...: df_andhra = df[df.State_Name == 'Andhra Pradesh']

   ...:

   ...: # state -3 : Arunachal Pradesh

   ...: df_arunachal = df[df.State_Name == 'Arunachal Pradesh']

   ...:

   ...: # state -4 : Assam

   ...: df_assam = df[df.State_Name == 'Assam']

   ...:

   ...: # state -5 : Bihar

   ...: df_bihar = df[df.State_Name == 'Bihar']

   ...:

   ...: # state -6 : Chandigarh

   ...: df_candigarh = df[df.State_Name == 'Chandigarh']

   ...:

   ...: # state -7 : Chhattisgarh

   ...: df_chattisgarh = df[df.State_Name == 'Chhattisgarh']

   ...:

   ...: # state -8 : Dadra and Nagar Haveli

   ...: df_dadra = df[df.State_Name == 'Dadra and Nagar Haveli']

   ...:

   ...: # state -9 : Goa

   ...: df_goa = df[df.State_Name == 'Goa']

   ...:

   ...: # state -10: Gujarat

   ...: df_gujrat = df[df.State_Name == 'Gujarat']

   ...:

   ...: # state -11: Haryana

   ...: df_haryana = df[df.State_Name == 'Haryana']

   ...:

   ...: # state -12: Himachal Pradesh

   ...: df_himachal = df[df.State_Name == 'Himachal Pradesh']

   ...:

   ...: # state -13: Jammu and Kashmir

   ...: df_jammu = df[df.State_Name == 'Jammu and Kashmir']

   ...:

   ...: # state -14: Jharkhand

   ...: df_jharkand = df[df.State_Name == 'Jharkhand']

   ...:

   ...: # state -15: Karnataka

   ...: df_karnataka = df[df.State_Name == 'Karnataka']

   ...:

   ...: # state -16: Kerala

   ...: df_kerala = df[df.State_Name == 'kerala']

   ...:

   ...: # state -17: Madhya Pradesh

   ...: df_madhya = df[df.State_Name == 'Madhya Pradesh']

   ...:

   ...: # state -18: Maharashtra

   ...: df_maharashtra = df[df.State_Name == 'Maharashtra']

   ...:

   ...: # state -19: Manipur

   ...: df_manipur = df[df.State_Name == 'Manipur']

   ...:

   ...: # state -20: Meghalaya

   ...: df_meghalaya = df[df.State_Name == 'Meghalaya']

   ...:

   ...: # state -21: Mizoram

   ...: df_mizoram = df[df.State_Name == 'Mizoram']

   ...:

   ...: # state -22: Nagaland

   ...: df_nagaland = df[df.State_Name == 'Nagaland']

   ...:

   ...: # state -23: Odisha

   ...: df_odisha = df[df.State_Name == 'Odisha']

   ...:

   ...: # state -24: Puducherry

   ...: df_puducherry = df[df.State_Name == 'Puducherry']

   ...:

   ...: # state -25: Punjab

   ...: df_punjab = df[df.State_Name == 'Punjab']

   ...:

   ...: # state -26: Rajasthan

   ...: df_rajasthan = df[df.State_Name == 'Rajasthan']

   ...:

   ...: # state -27: Sikkim

   ...: df_sikkim = df[df.State_Name == 'Sikkim']

   ...:

   ...: # state -28: Tamil Nadu

   ...: df_tamilnadu = df[df.State_Name == 'Tamil Nadu']

   ...:

   ...: # state -29: Telangana

   ...: df_telangana = df[df.State_Name == 'Telangana']

   ...:

   ...: # state -30: Tripura

   ...: df_tripura = df[df.State_Name == 'Tripura']

   ...:

   ...: # state -31: Uttar Pradesh

   ...: df_uttar = df[df.State_Name == 'Uttar Pradesh']

   ...:

   ...: # state -32: Uttarakhand

   ...: df_uttarakhand = df[df.State_Name == 'Uttarakhand']

   ...:

   ...: # state -33: West Bengal

   ...: df_wb = df[df.State_Name == 'West Bengal']

   ...:

   ...: # Question - D : print state names and Calculate no. of districts of all states

   ...:

   ...: def district_of_all_states():

   ...:

   ...: # state - 1 : Andaman and Nicobar Islands

   ...:

   ...: df_andaman = df[df.State_Name == 'Andaman and Nicobar Islands']

   ...: df_andaman_dist = df_andaman.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_andaman_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_andaman_dist)):

   ...: count = count+1

   ...: print("total no. of district in state - 1 : Andaman and Nicobar Islands = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -2 : Andhra Pradesh

   ...:

   ...: df_andhra = df[df.State_Name == 'Andhra Pradesh']

   ...: df_andhra_dist = df_andhra.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_andhra_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_andhra_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -2 : Andhra Pradesh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -3 : Arunachal Pradesh

   ...:

   ...: df_arunachal = df[df.State_Name == 'Arunachal Pradesh']

   ...: df_arunachal_dist = df_arunachal.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_arunachal_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_arunachal_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -3 : Arunachal Pradesh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -4 : Assam

   ...:

   ...: df_assam = df[df.State_Name == 'Assam']

   ...: df_assam_dist = df_assam.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_assam_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_assam_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -4 : Assam = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -5 : Bihar

   ...:

   ...: df_bihar = df[df.State_Name == 'Bihar']

   ...: df_bihar_dist = df_bihar.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_bihar_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_bihar_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -5 : Bihar = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -6 : Chandigarh

   ...:

   ...: df_candigarh = df[df.State_Name == 'Chandigarh']

   ...: df_candigarh_dist = df_candigarh.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_candigarh_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_candigarh_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -6 : Chandigarh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -7 : Chhattisgarh

   ...:

   ...: df_chattisgarh = df[df.State_Name == 'Chhattisgarh']

   ...: df_chattisgarh_dist = df_chattisgarh.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_chattisgarh_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_chattisgarh_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -7 : Chhattisgarh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -8 : Dadra and Nagar Haveli

   ...:

   ...: df_dadra = df[df.State_Name == 'Dadra and Nagar Haveli']

   ...: df_dadra_dist = df_dadra.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_dadra_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_dadra_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -8 : Dadra and Nagar Haveli = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -9 : Goa

   ...:

   ...: df_goa = df[df.State_Name == 'Goa']

   ...: df_goa_dist = df_goa.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_goa_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_goa_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -9 : Goa = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -10: Gujarat

   ...:

   ...: df_gujrat = df[df.State_Name == 'Gujarat']

   ...: df_gujrat_dist = df_gujrat.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_gujrat_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_gujrat_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -10: Gujarat = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -11: Haryana

   ...:

   ...: df_haryana = df[df.State_Name == 'Haryana']

   ...: df_haryana_dist = df_haryana.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_haryana_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_haryana_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -11: Haryana = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -12: Himachal Pradesh

   ...:

   ...: df_himachal = df[df.State_Name == 'Himachal Pradesh']

   ...: df_himachal_dist = df_himachal.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_himachal_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_himachal_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -12: Himachal Pradesh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -13: Jammu and Kashmir

   ...:

   ...: df_jammu = df[df.State_Name == 'Jammu and Kashmir']

   ...: df_jammu_dist = df_jammu.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_jammu_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_jammu_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -13: Jammu and Kashmir = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -14: Jharkhand

   ...:

   ...: df_jharkand = df[df.State_Name == 'Jharkhand']

   ...: df_jharkand_dist = df_jharkand.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_jharkand_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_jharkand_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -14: Jharkhand = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -15: Karnataka

   ...:

   ...: df_karnataka = df[df.State_Name == 'Karnataka']

   ...: df_karnataka_dist = df_karnataka.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_karnataka_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_karnataka_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -15: Karnataka = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -16: Kerala

   ...:

   ...: df_kerala = df[df.State_Name == 'kerala']

   ...: df_kerala_dist = df_kerala.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_kerala_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_kerala_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -16: Kerala = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -17: Madhya Pradesh

   ...:

   ...: df_madhya = df[df.State_Name == 'Madhya Pradesh']

   ...: df_madhya_dist = df_madhya.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_madhya_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_madhya_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -17: Madhya Pradesh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -18: Maharashtra

   ...:

   ...: df_maharashtra = df[df.State_Name == 'Maharashtra']

   ...: df_maharashtra_dist = df_maharashtra.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_maharashtra_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_maharashtra_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -18: Maharashtra = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -19: Manipur

   ...:

   ...: df_manipur = df[df.State_Name == 'Manipur']

   ...: df_manipur_dist = df_manipur.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_manipur_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_manipur_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -19: Manipur = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -20: Meghalaya

   ...:

   ...: df_meghalaya = df[df.State_Name == 'Meghalaya']

   ...: df_meghalaya_dist = df_meghalaya.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_meghalaya_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_meghalaya_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -20: Meghalaya = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -21: Mizoram

   ...:

   ...: df_mizoram = df[df.State_Name == 'Mizoram']

   ...: df_mizoram_dist = df_mizoram.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_mizoram_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_mizoram_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -21: Mizoram = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -22: Nagaland

   ...:

   ...: df_nagaland = df[df.State_Name == 'Nagaland']

   ...: df_nagaland_dist = df_nagaland.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_nagaland_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_nagaland_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -22: Nagaland = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -23: Odisha

   ...:

   ...: df_odisha = df[df.State_Name == 'Odisha']

   ...: df_odisha_dist = df_odisha.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_odisha_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_odisha_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -23: Odisha = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -24: Puducherry

   ...:

   ...: df_puducherry = df[df.State_Name == 'Puducherry']

   ...: df_puducherry_dist = df_puducherry.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_puducherry_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_puducherry_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -24: Puducherry = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -25: Punjab

   ...:

   ...: df_punjab = df[df.State_Name == 'Punjab']

   ...: df_punjab_dist = df_punjab.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_punjab_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_punjab_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -25: Punjab = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -26: Rajasthan

   ...:

   ...: df_rajasthan = df[df.State_Name == 'Rajasthan']

   ...: df_rajasthan_dist = df_rajasthan.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_rajasthan_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_rajasthan_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -26: Rajasthan = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -27: Sikkim

   ...:

   ...: df_sikkim = df[df.State_Name == 'Sikkim']

   ...: df_sikkim_dist = df_sikkim.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_sikkim_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_sikkim_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -27: Sikkim = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -28: Tamil Nadu

   ...:

   ...: df_tamilnadu = df[df.State_Name == 'Tamil Nadu']

   ...: df_tamilnadu_dist = df_tamilnadu.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_tamilnadu_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_tamilnadu_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -28: Tamil Nadu = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -29: Telangana

   ...:

   ...: df_telangana = df[df.State_Name == 'Telangana']

   ...: df_telangana_dist = df_telangana.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_telangana_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_telangana_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -29: Telangana = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -30: Tripura

   ...:

   ...: df_tripura = df[df.State_Name == 'Tripura']

   ...: df_tripura_dist = df_tripura.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_tripura_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_tripura_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -30: Tripura = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -31: Uttar Pradesh

   ...:

   ...: df_uttar = df[df.State_Name == 'Uttar Pradesh']

   ...: df_uttar_dist = df_uttar.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_uttar_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_uttar_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -31: Uttar Pradesh = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -32: Uttarakhand

   ...:

   ...: df_uttarakhand = df[df.State_Name == 'Uttarakhand']

   ...: df_uttarakhand_dist = df_uttarakhand.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_uttarakhand_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_uttarakhand_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -32: Uttarakhand = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...: # state -33: West Bengal

   ...:

   ...: df_wb = df[df.State_Name == 'West Bengal']

   ...: df_wb_dist = df_wb.groupby(['District_Name'])[['Crop_Year']].count()

   ...: print(df_wb_dist)

   ...: print("-----------------------------")

   ...: count = 0

   ...: for row in range(len(df_wb_dist)):

   ...: count = count+1

   ...: print("total no. of district in state -33: West Bengal = ",count)

   ...: print("-----------------------------\n")

   ...:

   ...:

   ...: # ----- indian area of production in year 2000 ------

   ...:

   ...: df_area_2000 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2000])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2000])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2000])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2000])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2000])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2000])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2000])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2000])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2000])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2000])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2000])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2000])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2000])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2000])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2000])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2000])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2000])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2000])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2000])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2000])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2000])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2000])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2000])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2000])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2000])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2000])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2000])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2000])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2000])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2000])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2000])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2000])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2000])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2001 ------

   ...:

   ...: df_area_2001 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2001])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2001])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2001])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2001])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2001])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2001])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2001])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2001])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2001])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2001])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2001])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2001])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2001])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2001])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2001])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2001])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2001])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2001])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2001])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2001])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2001])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2001])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2001])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2001])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2001])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2001])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2001])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2001])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2001])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2001])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2001])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2001])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2001])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2002 ------

   ...:

   ...: df_area_2002 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2002])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2002])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2002])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2002])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2002])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2002])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2002])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2002])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2002])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2002])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2002])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2002])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2002])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2002])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2002])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2002])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2002])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2002])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2002])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2002])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2002])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2002])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2002])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2002])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2002])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2002])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2002])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2002])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2002])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2002])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2002])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2002])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2002])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2003 ------

   ...:

   ...: df_area_2003 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2003])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2003])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2003])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2003])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2003])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2003])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2003])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2003])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2003])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2003])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2003])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2003])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2003])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2003])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2003])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2003])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2003])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2003])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2003])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2003])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2003])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2003])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2003])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2003])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2003])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2003])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2003])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2003])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2003])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2003])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2003])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2003])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2003])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2004 ------

   ...:

   ...: df_area_2004 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2004])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2004])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2004])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2004])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2004])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2004])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2004])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2004])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2004])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2004])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2004])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2004])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2004])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2004])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2004])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2004])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2004])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2004])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2004])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2004])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2004])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2004])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2004])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2004])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2004])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2004])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2004])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2004])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2004])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2004])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2004])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2004])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2004])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2005 ------

   ...:

   ...: df_area_2005 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2005])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2005])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2005])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2005])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2005])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2005])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2005])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2005])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2005])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2005])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2005])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2005])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2005])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2005])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2005])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2005])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2005])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2005])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2005])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2005])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2005])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2005])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2005])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2005])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2005])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2005])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2005])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2005])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2005])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2005])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2005])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2005])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2005])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2006 ------

   ...:

   ...: df_area_2006 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2006])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2006])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2006])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2006])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2006])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2006])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2006])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2006])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2006])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2006])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2006])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2006])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2006])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2006])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2006])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2006])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2006])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2006])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2006])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2006])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2006])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2006])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2006])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2006])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2006])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2006])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2006])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2006])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2006])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2006])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2006])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2006])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2006])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2007 ------

   ...:

   ...: df_area_2007 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2007])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2007])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2007])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2007])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2007])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2007])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2007])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2007])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2007])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2007])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2007])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2007])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2007])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2007])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2007])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2007])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2007])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2007])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2007])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2007])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2007])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2007])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2007])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2007])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2007])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2007])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2007])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2007])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2007])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2007])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2007])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2007])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2007])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2008 ------

   ...:

   ...: df_area_2008 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2008])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2008])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2008])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2008])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2008])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2008])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2008])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2008])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2008])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2008])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2008])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2008])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2008])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2008])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2008])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2008])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2008])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2008])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2008])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2008])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2008])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2008])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2008])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2008])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2008])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2008])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2008])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2008])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2008])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2008])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2008])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2008])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2008])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2009 ------

   ...:

   ...: df_area_2009 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2009])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2009])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2009])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2009])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2009])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2009])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2009])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2009])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2009])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2009])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2009])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2009])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2009])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2009])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2009])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2009])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2009])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2009])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2009])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2009])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2009])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2009])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2009])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2009])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2009])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2009])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2009])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2009])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2009])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2009])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2009])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2009])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2009])

   ...: )

   ...:

   ...: # ----- indian area of production in year 2010 ------

   ...:

   ...: df_area_2010 = (

   ...: sum(df_andaman['Area'][df_andaman['Crop_Year'] == 2010])

   ...: + sum(df_andhra['Area'][df_andhra['Crop_Year'] == 2010])

   ...: + sum(df_arunachal['Area'][df_arunachal['Crop_Year'] == 2010])

   ...: + sum(df_assam['Area'][df_assam['Crop_Year'] == 2010])

   ...: + sum(df_bihar['Area'][df_bihar['Crop_Year'] == 2010])

   ...: + sum(df_candigarh['Area'][df_candigarh['Crop_Year'] == 2010])

   ...: + sum(df_chattisgarh['Area'][df_chattisgarh['Crop_Year'] == 2010])

   ...: + sum(df_dadra['Area'][df_dadra['Crop_Year'] == 2010])

   ...: + sum(df_goa['Area'][df_goa['Crop_Year'] == 2010])

   ...: + sum(df_gujrat['Area'][df_gujrat['Crop_Year'] == 2010])

   ...: + sum(df_haryana['Area'][df_haryana['Crop_Year'] == 2010])

   ...: + sum(df_himachal['Area'][df_himachal['Crop_Year'] == 2010])

   ...: + sum(df_jammu['Area'][df_jammu['Crop_Year'] == 2010])

   ...: + sum(df_jharkand['Area'][df_jharkand['Crop_Year'] == 2010])

   ...: + sum(df_karnataka['Area'][df_karnataka['Crop_Year'] == 2010])

   ...: + sum(df_kerala['Area'][df_kerala['Crop_Year'] == 2010])

   ...: + sum(df_madhya['Area'][df_madhya['Crop_Year'] == 2010])

   ...: + sum(df_maharashtra['Area'][df_maharashtra['Crop_Year'] == 2010])

   ...: + sum(df_manipur['Area'][df_manipur['Crop_Year'] == 2010])

   ...: + sum(df_meghalaya['Area'][df_meghalaya['Crop_Year'] == 2010])

   ...: + sum(df_mizoram['Area'][df_mizoram['Crop_Year'] == 2010])

   ...: + sum(df_nagaland['Area'][df_nagaland['Crop_Year'] == 2010])

   ...: + sum(df_odisha['Area'][df_odisha['Crop_Year'] == 2010])

   ...: + sum(df_puducherry['Area'][df_puducherry['Crop_Year'] == 2010])

   ...: + sum(df_punjab['Area'][df_punjab['Crop_Year'] == 2010])

   ...: + sum(df_rajasthan['Area'][df_rajasthan['Crop_Year'] == 2010])

   ...: + sum(df_sikkim['Area'][df_sikkim['Crop_Year'] == 2010])

   ...: + sum(df_tamilnadu['Area'][df_tamilnadu['Crop_Year'] == 2010])

   ...: + sum(df_telangana['Area'][df_telangana['Crop_Year'] == 2010])

   ...: + sum(df_tripura['Area'][df_tripura['Crop_Year'] == 2010])

   ...: + sum(df_uttar['Area'][df_uttar['Crop_Year'] == 2010])

   ...: + sum(df_uttarakhand['Area'][df_uttarakhand['Crop_Year'] == 2010])

   ...: + sum(df_wb['Area'][df_wb['Crop_Year'] == 2010])

   ...: )

   ...:

   ...: # ----- indian Production in year 2000 ------

   ...:

   ...: df_Production_2000 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2000])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2000])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2000])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2000])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2000])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2000])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2000])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2000])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2000])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2000])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2000])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2000])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2000])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2000])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2000])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2000])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2000])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2000])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2000])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2000])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2000])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2000])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2000])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2000])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2000])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2000])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2000])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2000])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2000])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2000])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2000])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2000])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2000])

   ...: )

   ...:

   ...: # ----- indian Production in year 2001 ------

   ...:

   ...: df_Production_2001 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2001])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2001])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2001])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2001])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2001])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2001])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2001])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2001])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2001])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2001])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2001])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2001])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2001])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2001])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2001])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2001])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2001])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2001])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2001])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2001])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2001])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2001])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2001])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2001])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2001])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2001])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2001])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2001])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2001])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2001])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2001])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2001])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2001])

   ...: )

   ...:

   ...: # ----- indian Production in year 2002 ------

   ...:

   ...: df_Production_2002 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2002])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2002])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2002])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2002])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2002])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2002])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2002])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2002])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2002])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2002])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2002])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2002])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2002])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2002])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2002])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2002])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2002])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2002])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2002])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2002])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2002])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2002])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2002])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2002])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2002])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2002])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2002])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2002])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2002])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2002])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2002])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2002])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2002])

   ...: )

   ...:

   ...: # ----- indian Production in year 2003 ------

   ...:

   ...: df_Production_2003 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2003])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2003])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2003])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2003])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2003])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2003])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2003])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2003])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2003])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2003])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2003])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2003])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2003])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2003])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2003])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2003])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2003])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2003])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2003])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2003])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2003])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2003])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2003])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2003])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2003])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2003])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2003])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2003])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2003])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2003])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2003])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2003])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2003])

   ...: )

   ...:

   ...: # ----- indian Production in year 2004 ------

   ...:

   ...: df_Production_2004 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2004])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2004])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2004])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2004])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2004])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2004])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2004])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2004])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2004])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2004])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2004])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2004])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2004])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2004])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2004])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2004])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2004])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2004])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2004])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2004])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2004])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2004])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2004])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2004])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2004])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2004])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2004])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2004])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2004])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2004])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2004])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2004])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2004])

   ...: )

   ...:

   ...: # ----- indian Production in year 2005 ------

   ...:

   ...: df_Production_2005 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2005])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2005])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2005])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2005])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2005])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2005])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2005])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2005])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2005])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2005])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2005])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2005])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2005])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2005])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2005])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2005])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2005])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2005])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2005])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2005])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2005])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2005])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2005])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2005])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2005])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2005])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2005])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2005])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2005])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2005])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2005])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2005])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2005])

   ...: )

   ...:

   ...: # ----- indian Production in year 2006 ------

   ...:

   ...: df_Production_2006 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2006])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2006])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2006])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2006])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2006])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2006])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2006])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2006])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2006])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2006])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2006])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2006])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2006])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2006])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2006])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2006])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2006])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2006])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2006])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2006])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2006])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2006])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2006])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2006])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2006])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2006])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2006])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2006])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2006])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2006])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2006])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2006])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2006])

   ...: )

   ...:

   ...: # ----- indian Production in year 2007 ------

   ...:

   ...: df_Production_2007 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2007])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2007])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2007])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2007])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2007])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2007])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2007])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2007])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2007])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2007])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2007])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2007])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2007])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2007])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2007])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2007])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2007])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2007])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2007])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2007])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2007])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2007])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2007])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2007])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2007])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2007])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2007])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2007])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2007])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2007])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2007])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2007])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2007])

   ...: )

   ...:

   ...: # ----- indian Production in year 2008 ------

   ...:

   ...: df_Production_2008 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2008])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2008])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2008])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2008])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2008])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2008])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2008])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2008])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2008])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2008])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2008])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2008])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2008])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2008])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2008])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2008])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2008])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2008])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2008])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2008])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2008])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2008])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2008])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2008])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2008])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2008])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2008])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2008])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2008])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2008])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2008])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2008])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2008])

   ...: )

   ...:

   ...: # ----- indian Production in year 2009 ------

   ...:

   ...: df_Production_2009 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2009])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2009])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2009])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2009])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2009])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2009])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2009])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2009])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2009])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2009])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2009])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2009])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2009])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2009])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2009])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2009])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2009])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2009])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2009])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2009])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2009])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2009])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2009])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2009])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2009])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2009])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2009])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2009])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2009])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2009])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2009])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2009])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2009])

   ...: )

   ...:

   ...: # ----- indian Production in year 2010 ------

   ...:

   ...: df_Production_2010 = (

   ...: sum(df_andaman['Production'][df_andaman['Crop_Year'] == 2010])

   ...: + sum(df_andhra['Production'][df_andhra['Crop_Year'] == 2010])

   ...: + sum(df_arunachal['Production'][df_arunachal['Crop_Year'] == 2010])

   ...: + sum(df_assam['Production'][df_assam['Crop_Year'] == 2010])

   ...: + sum(df_bihar['Production'][df_bihar['Crop_Year'] == 2010])

   ...: + sum(df_candigarh['Production'][df_candigarh['Crop_Year'] == 2010])

   ...: + sum(df_chattisgarh['Production'][df_chattisgarh['Crop_Year'] == 2010])

   ...: + sum(df_dadra['Production'][df_dadra['Crop_Year'] == 2010])

   ...: + sum(df_goa['Production'][df_goa['Crop_Year'] == 2010])

   ...: + sum(df_gujrat['Production'][df_gujrat['Crop_Year'] == 2010])

   ...: + sum(df_haryana['Production'][df_haryana['Crop_Year'] == 2010])

   ...: + sum(df_himachal['Production'][df_himachal['Crop_Year'] == 2010])

   ...: + sum(df_jammu['Production'][df_jammu['Crop_Year'] == 2010])

   ...: + sum(df_jharkand['Production'][df_jharkand['Crop_Year'] == 2010])

   ...: + sum(df_karnataka['Production'][df_karnataka['Crop_Year'] == 2010])

   ...: + sum(df_kerala['Production'][df_kerala['Crop_Year'] == 2010])

   ...: + sum(df_madhya['Production'][df_madhya['Crop_Year'] == 2010])

   ...: + sum(df_maharashtra['Production'][df_maharashtra['Crop_Year'] == 2010])

   ...: + sum(df_manipur['Production'][df_manipur['Crop_Year'] == 2010])

   ...: + sum(df_meghalaya['Production'][df_meghalaya['Crop_Year'] == 2010])

   ...: + sum(df_mizoram['Production'][df_mizoram['Crop_Year'] == 2010])

   ...: + sum(df_nagaland['Production'][df_nagaland['Crop_Year'] == 2010])

   ...: + sum(df_odisha['Production'][df_odisha['Crop_Year'] == 2010])

   ...: + sum(df_puducherry['Production'][df_puducherry['Crop_Year'] == 2010])

   ...: + sum(df_punjab['Production'][df_punjab['Crop_Year'] == 2010])

   ...: + sum(df_rajasthan['Production'][df_rajasthan['Crop_Year'] == 2010])

   ...: + sum(df_sikkim['Production'][df_sikkim['Crop_Year'] == 2010])

   ...: + sum(df_tamilnadu['Production'][df_tamilnadu['Crop_Year'] == 2010])

   ...: + sum(df_telangana['Production'][df_telangana['Crop_Year'] == 2010])

   ...: + sum(df_tripura['Production'][df_tripura['Crop_Year'] == 2010])

   ...: + sum(df_uttar['Production'][df_uttar['Crop_Year'] == 2010])

   ...: + sum(df_uttarakhand['Production'][df_uttarakhand['Crop_Year'] == 2010])

   ...: + sum(df_wb['Production'][df_wb['Crop_Year'] == 2010])

   ...: )

   ...:

   ...: def production_area_data():

   ...:

   ...: print("\n----------------------------------------------------")

   ...: print("\tArea of production in India (2000 to 2010)")

   ...: print("-------------------------------------------------------\n")

   ...: print("[01] Area of production in year 2000 =",df_area_2000)

   ...: print("[02] Area of production in year 2001 =",df_area_2001)

   ...: print("[03] Area of production in year 2002 =",df_area_2002)

   ...: print("[04] Area of production in year 2003 =",df_area_2003)

   ...: print("[05] Area of production in year 2004 =",df_area_2004)

   ...: print("[06] Area of production in year 2005 =",df_area_2005)

   ...: print("[07] Area of production in year 2006 =",df_area_2006)

   ...: print("[08] Area of production in year 2007 =",df_area_2007)

   ...: print("[09] Area of production in year 2008 =",df_area_2008)

   ...: print("[10] Area of production in year 2009 =",df_area_2009)

   ...: print("[11] Area of production in year 2010 =",df_area_2010)

   ...: print("-------------------------------------------------------\n")

   ...:

   ...:

   ...: def production_data():

   ...:

   ...: print("\n----------------------------------------------------")

   ...: print("\tProduction in India (2000 to 2010)")

   ...: print("-------------------------------------------------------\n")

   ...: print("[01] Production in year 2000 =",df_Production_2000)

   ...: print("[02] Production in year 2001 =",df_Production_2001)

   ...: print("[03] Production in year 2002 =",df_Production_2002)

   ...: print("[04] Production in year 2003 =",df_Production_2003)

   ...: print("[05] Production in year 2004 =",df_Production_2004)

   ...: print("[06] Production in year 2005 =",df_Production_2005)

   ...: print("[07] Production in year 2006 =",df_Production_2006)

   ...: print("[08] Production in year 2007 =",df_Production_2007)

   ...: print("[09] Production in year 2008 =",df_Production_2008)

   ...: print("[10] Production in year 2009 =",df_Production_2009)

   ...: print("[11] Production in year 2010 =",df_Production_2010)

   ...: print("-------------------------------------------------------\n")

   ...:

   ...:

   ...: df_year = (2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010)

   ...: df_area_2000_10 = (df_area_2000//pow(10,5),

   ...: df_area_2001//pow(10,5),

   ...: df_area_2002//pow(10,5),

   ...: df_area_2003//pow(10,5),

   ...: df_area_2004//pow(10,5),

   ...: df_area_2005//pow(10,5),

   ...: df_area_2005//pow(10,5),

   ...: df_area_2005//pow(10,5),

   ...: df_area_2005//pow(10,5),

   ...: df_area_2009//pow(10,5),

   ...: df_area_2010//pow(10,5))

   ...:

   ...: df_Production_2000_10 = (

   ...: df_Production_2000//pow(10,6),

   ...: df_Production_2001//pow(10,6),

   ...: df_Production_2002//pow(10,6),

   ...: df_Production_2003//pow(10,6),

   ...: df_Production_2004//pow(10,6),

   ...: df_Production_2006//pow(10,6),

   ...: df_Production_2006//pow(10,6),

   ...: df_Production_2006//pow(10,6),

   ...: df_Production_2006//pow(10,6),

   ...: df_Production_2009//pow(10,6),

   ...: df_Production_2010//pow(10,6))

   ...:

   ...: def area_and_production_plot():

   ...:

   ...: plt.title("Crop_year vs. (production_area & production)[2000 to 2010]")

   ...: plt.plot(df_year,df_area_2000_10,linestyle="dashed",label="Area * 10^5")

   ...: plt.plot(df_year,df_Production_2000_10,label="Production * 10^6")

   ...: plt.legend()

   ...: plt.show()

   ...:

   ...:

   ...:

   ...: # [area of production] predection model design using linear regression

   ...:

   ...: def estimate_coef(x, y):

   ...:

   ...: n = np.size(x) # size of data set

   ...: mean_x = np.mean(x)

   ...: mean_y = np.mean(y)

   ...: xy = np.sum(y*x) - n*(mean_y)*(mean_x)

   ...: xx = np.sum(x*x) - n*(mean_x)*(mean_x)

   ...: b_1 = xy / xx

   ...: b_0 = (mean_y) - b_1*(mean_x)

   ...: return(b_0,b_1)

   ...:

   ...: def production_area_prediction_2023(x,y,b,bm,a):

   ...:

   ...: # Create perdiction upto 2023

   ...: # Using Equation : y = b_0 + (b_1 * x)

   ...:

   ...: df_area_2010_1 = df_area_2010//pow(10,5)

   ...: df_area_2011 = bm + (a * 2011)

   ...: df_area_2012 = bm + (a * 2012)

   ...: df_area_2013 = bm + (a * 2013)

   ...: df_area_2014 = bm + (a * 2014)

   ...: df_area_2015 = bm + (a * 2015)

   ...: df_area_2016 = bm + (a * 2016)

   ...: df_area_2017 = bm + (a * 2017)

   ...: df_area_2018 = bm + (a * 2018)

   ...: df_area_2019 = bm + (a * 2019)

   ...: df_area_2020 = bm + (a * 2020)

   ...: df_area_2021 = bm + (a * 2021)

   ...: df_area_2022 = bm + (a * 2022)

   ...: df_area_2023 = bm + (a * 2023)

   ...: df_area_2024 = bm + (a * 2024)

   ...: df_area_2025 = bm + (a * 2025)

   ...:

   ...: df_2000_2023 =(df_area_2010_1,

   ...: df_area_2011,df_area_2012,df_area_2013,

   ...: df_area_2014,df_area_2015,df_area_2016,

   ...: df_area_2017,df_area_2018,df_area_2019,

   ...: df_area_2020,df_area_2021,df_area_2022,

   ...: df_area_2023,df_area_2024,df_area_2025 )

   ...:

   ...: df_year1 = (2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,

   ...: 2022,2023,2024,2025)

   ...:

   ...: # plot regression line

   ...:

   ...: plt.plot(x, y, color = "m",marker = "o",label="Actual production area * 10^5")

   ...: y_pred = b[0] + b[1]*x

   ...: plt.plot(x, y_pred, color = "g",label="Regression line")

   ...: plt.xlabel('year -- >')

   ...: plt.ylabel('Area of production --->')

   ...:

   ...: # plot prediction line

   ...:

   ...: plt.title("Prediction for production area from 2011 to 2025 ")

   ...: plt.plot(df_year1,df_2000_2023,linestyle="dashed",label="Predicted production area * 10^5")

   ...: plt.legend()

   ...: plt.show()

   ...:

   ...: mean_y = np.mean(y)

   ...: area_growth_2011 = (((df_area_2011)-(mean_y))/(mean_y))*100

   ...: area_growth_2012 = (((df_area_2012)-(mean_y))/(mean_y))*100

   ...: area_growth_2013 = (((df_area_2013)-(mean_y))/(mean_y))*100

   ...: area_growth_2014 = (((df_area_2014)-(mean_y))/(mean_y))*100

   ...: area_growth_2015 = (((df_area_2015)-(mean_y))/(mean_y))*100

   ...: area_growth_2016 = (((df_area_2016)-(mean_y))/(mean_y))*100

   ...: area_growth_2017 = (((df_area_2017)-(mean_y))/(mean_y))*100

   ...: area_growth_2018 = (((df_area_2018)-(mean_y))/(mean_y))*100

   ...: area_growth_2019 = (((df_area_2019)-(mean_y))/(mean_y))*100

   ...: area_growth_2020 = (((df_area_2020)-(mean_y))/(mean_y))*100

   ...: area_growth_2021 = (((df_area_2021)-(mean_y))/(mean_y))*100

   ...: area_growth_2022 = (((df_area_2022)-(mean_y))/(mean_y))*100

   ...: area_growth_2023 = (((df_area_2023)-(mean_y))/(mean_y))*100

   ...: area_growth_2024 = (((df_area_2024)-(mean_y))/(mean_y))*100

   ...: area_growth_2025 = (((df_area_2025)-(mean_y))/(mean_y))*100

   ...:

   ...:

   ...: print("\n----------------------------------------------------------")

   ...: print("production area growth according to prediction model")

   ...: print("--------------------------------------------------------\n")

   ...: print("Production area gowth in 2011 = ",area_growth_2011,"%")

   ...: print("Production area gowth in 2012 = ",area_growth_2012,"%")

   ...: print("Production area gowth in 2013 = ",area_growth_2013,"%")

   ...: print("Production area gowth in 2014 = ",area_growth_2014,"%")

   ...: print("Production area gowth in 2015 = ",area_growth_2015,"%")

   ...: print("Production area gowth in 2016 = ",area_growth_2016,"%")

   ...: print("Production area gowth in 2017 = ",area_growth_2017,"%")

   ...: print("Production area gowth in 2018 = ",area_growth_2018,"%")

   ...: print("Production area gowth in 2019 = ",area_growth_2019,"%")

   ...: print("Production area gowth in 2020 = ",area_growth_2020,"%")

   ...: print("Production area gowth in 2021 = ",area_growth_2021,"%")

   ...: print("Production area gowth in 2022 = ",area_growth_2022,"%")

   ...: print("Production area gowth in 2023 = ",area_growth_2023,"%")

   ...: print("Production area gowth in 2024 = ",area_growth_2024,"%")

   ...: print("Production area gowth in 2025 = ",area_growth_2025,"%")

   ...: print("--------------------------------------------------------\n")

   ...:

   ...:

   ...: #---- Production prediction model -----

   ...:

   ...: def estimate_coef1(x, y):

   ...:

   ...: n = np.size(x) # size of data set

   ...: mean_x = np.mean(x)

   ...: mean_y = np.mean(y)

   ...: xy = np.sum(y*x) - n*(mean_y)*(mean_x)

   ...: xx = np.sum(x*x) - n*(mean_x)*(mean_x)

   ...: b_1 = xy / xx

   ...: b_0 = (mean_y) - b_1*(mean_x)

   ...: return(b_0,b_1)

   ...:

   ...: def Production_prediction_2023(x,y,b,bm,a):

   ...:

   ...: # Create perdiction upto 2023

   ...: # Using Equation : y = b_0 + (b_1 * x)

   ...:

   ...: df_Production_2010_1 = df_Production_2010//pow(10,6)

   ...: df_Production_2011 = bm + (a * 2011)

   ...: df_Production_2012 = bm + (a * 2012)

   ...: df_Production_2013 = bm + (a * 2013)

   ...: df_Production_2014 = bm + (a * 2014)

   ...: df_Production_2015 = bm + (a * 2015)

   ...: df_Production_2016 = bm + (a * 2016)

   ...: df_Production_2017 = bm + (a * 2017)

   ...: df_Production_2018 = bm + (a * 2018)

   ...: df_Production_2019 = bm + (a * 2019)

   ...: df_Production_2020 = bm + (a * 2020)

   ...: df_Production_2021 = bm + (a * 2021)

   ...: df_Production_2022 = bm + (a * 2022)

   ...: df_Production_2023 = bm + (a * 2023)

   ...: df_Production_2024 = bm + (a * 2024)

   ...: df_Production_2025 = bm + (a * 2025)

   ...:

   ...: df_production_2000_2023 =(df_Production_2010_1,

   ...: df_Production_2011,df_Production_2012,df_Production_2013,

   ...: df_Production_2014,df_Production_2015,df_Production_2016,

   ...: df_Production_2017,df_Production_2018,df_Production_2019,

   ...: df_Production_2020,df_Production_2021,df_Production_2022,

   ...: df_Production_2023,df_Production_2024,df_Production_2025 )

   ...:

   ...: df_year1 = (2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,

   ...: 2022,2023,2024,2025)

   ...:

   ...: # plot regression line

   ...:

   ...: plt.plot(x, y, color = "m",marker = "o",label="Actual production * 10^6")

   ...: y_pred = b[0] + b[1]*x

   ...: plt.plot(x, y_pred, color = "g",label="Regression line")

   ...: plt.xlabel('year -- >')

   ...: plt.ylabel('production --->')

   ...:

   ...: # plot prediction line

   ...:

   ...: plt.title("Prediction for Crop Production from 2011 to 2025 ")

   ...: plt.plot(df_year1,df_production_2000_2023,linestyle="dashed",label="Predicted Production * 10^6")

   ...: plt.legend()

   ...: plt.show()

   ...:

   ...: mean_y = np.mean(y)

   ...: Production_growth_2011 = (((df_Production_2011)-(mean_y))/(mean_y))*100

   ...: Production_growth_2012 = (((df_Production_2012)-(mean_y))/(mean_y))*100

   ...: Production_growth_2013 = (((df_Production_2013)-(mean_y))/(mean_y))*100

   ...: Production_growth_2014 = (((df_Production_2014)-(mean_y))/(mean_y))*100

   ...: Production_growth_2015 = (((df_Production_2015)-(mean_y))/(mean_y))*100

   ...: Production_growth_2016 = (((df_Production_2016)-(mean_y))/(mean_y))*100

   ...: Production_growth_2017 = (((df_Production_2017)-(mean_y))/(mean_y))*100

   ...: Production_growth_2018 = (((df_Production_2018)-(mean_y))/(mean_y))*100

   ...: Production_growth_2019 = (((df_Production_2019)-(mean_y))/(mean_y))*100

   ...: Production_growth_2020 = (((df_Production_2020)-(mean_y))/(mean_y))*100

   ...: Production_growth_2021 = (((df_Production_2021)-(mean_y))/(mean_y))*100

   ...: Production_growth_2022 = (((df_Production_2022)-(mean_y))/(mean_y))*100

   ...: Production_growth_2023 = (((df_Production_2023)-(mean_y))/(mean_y))*100

   ...: Production_growth_2024 = (((df_Production_2024)-(mean_y))/(mean_y))*100

   ...: Production_growth_2025 = (((df_Production_2025)-(mean_y))/(mean_y))*100

   ...:

   ...: print("\n----------------------------------------------------------")

   ...: print("Production growth according to prediction model")

   ...: print("--------------------------------------------------------\n")

   ...: print("Production gowth in 2011 = ",Production_growth_2011,"%")

   ...: print("Production gowth in 2012 = ",Production_growth_2012,"%")

   ...: print("Production gowth in 2013 = ",Production_growth_2013,"%")

   ...: print("Production gowth in 2014 = ",Production_growth_2014,"%")

   ...: print("Production gowth in 2015 = ",Production_growth_2015,"%")

   ...: print("Production gowth in 2016 = ",Production_growth_2016,"%")

   ...: print("Production gowth in 2017 = ",Production_growth_2017,"%")

   ...: print("Production gowth in 2018 = ",Production_growth_2018,"%")

   ...: print("Production gowth in 2019 = ",Production_growth_2019,"%")

   ...: print("Production gowth in 2020 = ",Production_growth_2020,"%")

   ...: print("Production gowth in 2021 = ",Production_growth_2021,"%")

   ...: print("Production gowth in 2022 = ",Production_growth_2022,"%")

   ...: print("Production gowth in 2023 = ",Production_growth_2023,"%")

   ...: print("Production gowth in 2024 = ",Production_growth_2024,"%")

   ...: print("Production gowth in 2025 = ",Production_growth_2025,"%")

   ...: print("--------------------------------------------------------\n")

   ...:

   ...:

   ...: def main():

   ...:

   ...: ch = 1

   ...: while (ch == 1):

   ...: print("-----------------------------------------")

   ...: print("\tMain menu (Agriculture Data Aanlysis) :")

   ...: print("-----------------------------------------\n")

   ...: print("[1] Print dimension of the data file")

   ...: print("[2] Print column names of the data file")

   ...: print("[3] Print available states in the data")

   ...: print("[4] Print districts of all states")

   ...: print("[5] Print production data")

   ...: print("[6] Print production area data")

   ...: print("[7] Plot area and production (without prediction)")

   ...: print("[8] Area prediction model and print growth rate")

   ...: print("[9] Production prediction model and print growth rate")

   ...: print("---------------------------------------")

   ...:

   ...: op = input("enter your option : ")

   ...: op1 = int(op,10)

   ...:

   ...: if op1 == 1:

   ...: dimension()

   ...:

   ...: elif op1 == 2:

   ...: column_names()

   ...:

   ...: elif op1 == 3:

   ...: states()

   ...:

   ...: elif op1 == 4 :

   ...: district_of_all_states()

   ...:

   ...: elif op1 == 5:

   ...: production_data()

   ...:

   ...: elif op1 == 6:

   ...: production_area_data()

   ...:

   ...: elif op1 == 7:

   ...: area_and_production_plot()

   ...: break

   ...:

   ...: elif op1 == 8:

   ...: x = np.array(df_year)

   ...: y = np.array(df_area_2000_10)

   ...: b = estimate_coef(x, y)

   ...: print("\n----------------------")

   ...: print("Estimated coefficients for area:\n----------------------\n")

   ...: print("b_0 = {}\nb_1 = {}".format(b[0], b[1]))

   ...: print("----------------------\n")

   ...: production_area_prediction_2023(x,y,b,b[0],b[1])

   ...: break

   ...:

   ...: elif op1 == 9 :

   ...: x = np.array(df_year)

   ...: y = np.array(df_Production_2000_10)

   ...: b = estimate_coef1(x, y)

   ...: print("\n----------------------")

   ...: print("Estimated coefficients for production:\n----------------------\n")

   ...: print("b_0 = {}\nb_1 = {}".format(b[0], b[1]))

   ...: print("----------------------\n")

   ...: Production_prediction_2023(x,y,b,b[0],b[1])

   ...: break

   ...:

   ...:

   ...: else:

   ...: print("wrong input !!")

   ...:

   ...: #------- exit process design --------

   ...:

   ...: ch1 = input("enter:\n[0] for exit\n[1] for continue : ")

   ...: ch =int(ch1,10)

   ...:

   ...: if __name__ == "__main__":

   ...: main()

   ...:

   ...:


------- output data :-----------


Agriculture data analysis:

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 1

---------------------------------------------

Dimension of the data frame = (246091, 7)

---------------------------------------------


enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 2

Column names as follows :

---------------------------------------------

1 --> State_Name

2 --> District_Name

3 --> Crop_Year

4 --> Season

5 --> Crop

6 --> Area

7 --> Production

---------------------------------------------



enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 3

states names :

-------------------------------

District_Name

State_Name

Andaman and Nicobar Islands 203

Andhra Pradesh 9628

Arunachal Pradesh 2546

Assam 14628

Bihar 18885

Chandigarh 90

Chhattisgarh 10709

Dadra and Nagar Haveli 263

Goa 208

Gujarat 8436

Haryana 5875

Himachal Pradesh 2494

Jammu and Kashmir 1634

Jharkhand 1266

Karnataka 21122

Kerala 4261

Madhya Pradesh 22943

Maharashtra 12628

Manipur 1267

Meghalaya 2867

Mizoram 957

Nagaland 3906

Odisha 13575

Puducherry 876

Punjab 3173

Rajasthan 12514

Sikkim 714

Tamil Nadu 13547

Telangana 5649

Tripura 1412

Uttar Pradesh 33306

Uttarakhand 4896

West Bengal 9613

-------------------------------

total no. of states = 33

-----------------------------



enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 4

Crop_Year

District_Name

NICOBARS 79

NORTH AND MIDDLE ANDAMAN 50

SOUTH ANDAMANS 74

-----------------------------

total no. of district in state - 1 : Andaman and Nicobar Islands = 3

-----------------------------


Crop_Year

District_Name

ANANTAPUR 788

CHITTOOR 789

EAST GODAVARI 765

GUNTUR 687

KADAPA 824

KRISHNA 636

KURNOOL 828

PRAKASAM 808

SPSR NELLORE 682

SRIKAKULAM 689

VISAKHAPATANAM 812

VIZIANAGARAM 741

WEST GODAVARI 579

-----------------------------

total no. of district in state -2 : Andhra Pradesh = 13

-----------------------------


Crop_Year

District_Name

ANJAW 102

CHANGLANG 189

DIBANG VALLEY 147

EAST KAMENG 158

EAST SIANG 190

KURUNG KUMEY 99

LOHIT 190

LONGDING 13

LOWER DIBANG VALLEY 130

LOWER SUBANSIRI 170

NAMSAI 1

PAPUM PARE 184

TAWANG 159

TIRAP 160

UPPER SIANG 146

UPPER SUBANSIRI 169

WEST KAMENG 153

WEST SIANG 186

-----------------------------

total no. of district in state -3 : Arunachal Pradesh = 18

-----------------------------


Crop_Year

District_Name

BAKSA 351

BARPETA 592

BONGAIGAON 586

CACHAR 575

CHIRANG 349

DARRANG 579

DHEMAJI 590

DHUBRI 572

DIBRUGARH 539

DIMA HASAO 574

GOALPARA 590

GOLAGHAT 580

HAILAKANDI 535

JORHAT 552

KAMRUP 591

KAMRUP METRO 348

KARBI ANGLONG 588

KARIMGANJ 515

KOKRAJHAR 591

LAKHIMPUR 590

MARIGAON 592

NAGAON 591

NALBARI 591

SIVASAGAR 564

SONITPUR 590

TINSUKIA 571

UDALGURI 342

-----------------------------

total no. of district in state -4 : Assam = 27

-----------------------------


Crop_Year

District_Name

ARARIA 566

ARWAL 297

AURANGABAD 447

BANKA 437

BEGUSARAI 590

BHAGALPUR 611

BHOJPUR 497

BUXAR 413

DARBHANGA 500

GAYA 576

GOPALGANJ 523

JAMUI 378

JEHANABAD 478

KAIMUR (BHABUA) 403

KATIHAR 579

KHAGARIA 578

KISHANGANJ 549

LAKHISARAI 275

MADHEPURA 539

MADHUBANI 587

MUNGER 408

MUZAFFARPUR 554

NALANDA 460

NAWADA 518

PASHCHIM CHAMPARAN 574

PATNA 453

PURBI CHAMPARAN 550

PURNIA 546

ROHTAS 498

SAHARSA 505

SAMASTIPUR 577

SARAN 506

SHEIKHPURA 297

SHEOHAR 417

SITAMARHI 530

SIWAN 551

SUPAUL 546

VAISHALI 572

-----------------------------

total no. of district in state -5 : Bihar = 38

-----------------------------


Crop_Year

District_Name

CHANDIGARH 90

-----------------------------

total no. of district in state -6 : Chandigarh = 1

-----------------------------


Crop_Year

District_Name

BALOD 135

BALODA BAZAR 150

BALRAMPUR 161

BASTAR 583

BEMETARA 139

BIJAPUR 246

BILASPUR 591

DANTEWADA 497

DHAMTARI 559

DURG 568

GARIYABAND 155

JANJGIR-CHAMPA 559

JASHPUR 568

KABIRDHAM 509

KANKER 548

KONDAGAON 145

KORBA 555

KOREA 504

MAHASAMUND 537

MUNGELI 127

NARAYANPUR 236

RAIGARH 583

RAIPUR 584

RAJNANDGAON 617

SUKMA 117

SURAJPUR 151

SURGUJA 585

-----------------------------

total no. of district in state -7 : Chhattisgarh = 27

-----------------------------


Crop_Year

District_Name

DADRA AND NAGAR HAVELI 263

-----------------------------

total no. of district in state -8 : Dadra and Nagar Haveli = 1

-----------------------------


Crop_Year

District_Name

NORTH GOA 107

SOUTH GOA 101

-----------------------------

total no. of district in state -9 : Goa = 2

-----------------------------


Crop_Year

District_Name

AHMADABAD 372

AMRELI 348

ANAND 247

BANAS KANTHA 396

BHARUCH 410

BHAVNAGAR 345

DANG 238

DOHAD 218

GANDHINAGAR 329

JAMNAGAR 369

JUNAGADH 365

KACHCHH 316

KHEDA 454

MAHESANA 422

NARMADA 200

NAVSARI 210

PANCH MAHALS 482

PATAN 199

PORBANDAR 166

RAJKOT 346

SABAR KANTHA 395

SURAT 406

SURENDRANAGAR 330

TAPI 118

VADODARA 461

VALSAD 294

-----------------------------

total no. of district in state -10: Gujarat = 26

-----------------------------


Crop_Year

District_Name

AMBALA 320

BHIWANI 306

FARIDABAD 277

FATEHABAD 302

GURGAON 285

HISAR 313

JHAJJAR 270

JIND 265

KAITHAL 305

KARNAL 334

KURUKSHETRA 290

MAHENDRAGARH 246

MEWAT 135

PALWAL 78

PANCHKULA 325

PANIPAT 316

REWARI 285

ROHTAK 278

SIRSA 312

SONIPAT 307

YAMUNANAGAR 326

-----------------------------

total no. of district in state -11: Haryana = 21

-----------------------------


Crop_Year

District_Name

BILASPUR 224

CHAMBA 220

HAMIRPUR 196

KANGRA 262

KINNAUR 113

KULLU 211

LAHUL AND SPITI 79

MANDI 260

SHIMLA 249

SIRMAUR 258

SOLAN 219

UNA 203

-----------------------------

total no. of district in state -12: Himachal Pradesh = 12

-----------------------------


Empty DataFrame

Columns: [Crop_Year]

Index: []

-----------------------------

total no. of district in state -13: Jammu and Kashmir = 0

-----------------------------


Crop_Year

District_Name

BOKARO 45

CHATRA 59

DEOGHAR 50

DHANBAD 38

DUMKA 59

EAST SINGHBUM 45

GARHWA 66

GIRIDIH 58

GODDA 68

GUMLA 67

HAZARIBAGH 77

JAMTARA 44

KHUNTI 6

KODERMA 56

LATEHAR 61

LOHARDAGA 61

PAKUR 57

PALAMU 72

RAMGARH 6

RANCHI 72

SAHEBGANJ 52

SARAIKELA KHARSAWAN 42

SIMDEGA 54

WEST SINGHBHUM 51

-----------------------------

total no. of district in state -14: Jharkhand = 24

-----------------------------


Crop_Year

District_Name

BAGALKOT 733

BANGALORE RURAL 794

BELGAUM 925

BELLARY 887

BENGALURU URBAN 672

BIDAR 781

BIJAPUR 699

CHAMARAJANAGAR 844

CHIKBALLAPUR 328

CHIKMAGALUR 820

CHITRADURGA 840

DAKSHIN KANNAD 366

DAVANGERE 886

DHARWAD 825

GADAG 755

GULBARGA 833

HASSAN 895

HAVERI 870

KODAGU 423

KOLAR 629

KOPPAL 678

MANDYA 780

MYSORE 832

RAICHUR 691

RAMANAGARA 310

SHIMOGA 825

TUMKUR 936

UDUPI 376

UTTAR KANNAD 677

YADGIR 212

-----------------------------

total no. of district in state -15: Karnataka = 30

-----------------------------


Empty DataFrame

Columns: [Crop_Year]

Index: []

-----------------------------

total no. of district in state -16: Kerala = 0

-----------------------------


Crop_Year

District_Name

AGAR MALWA 28

ALIRAJPUR 178

ANUPPUR 342

ASHOKNAGAR 290

BALAGHAT 572

BARWANI 501

BETUL 505

BHIND 404

BHOPAL 410

BURHANPUR 348

CHHATARPUR 516

CHHINDWARA 573

DAMOH 498

DATIA 436

DEWAS 473

DHAR 562

DINDORI 405

GUNA 445

GWALIOR 401

HARDA 486

HOSHANGABAD 543

INDORE 427

JABALPUR 500

JHABUA 495

KATNI 469

KHANDWA 577

KHARGONE 517

MANDLA 482

MANDSAUR 455

MORENA 395

NARSINGHPUR 493

NEEMUCH 416

PANNA 485

RAISEN 485

RAJGARH 433

RATLAM 515

REWA 510

SAGAR 535

SATNA 504

SEHORE 448

SEONI 544

SHAHDOL 514

SHAJAPUR 456

SHEOPUR 370

SHIVPURI 490

SIDHI 498

SINGRAULI 183

TIKAMGARH 485

UJJAIN 458

UMARIA 441

VIDISHA 447

-----------------------------

total no. of district in state -17: Madhya Pradesh = 51

-----------------------------


Crop_Year

District_Name

AHMEDNAGAR 495

AKOLA 355

AMRAVATI 400

AURANGABAD 432

BEED 464

BHANDARA 288

BULDHANA 403

CHANDRAPUR 325

DHULE 418

GADCHIROLI 306

GONDIA 229

HINGOLI 377

JALGAON 402

JALNA 435

KOLHAPUR 409

LATUR 466

MUMBAI 1

NAGPUR 388

NANDED 461

NANDURBAR 377

NASHIK 459

OSMANABAD 461

PALGHAR 11

PARBHANI 467

PUNE 495

RAIGAD 236

RATNAGIRI 213

SANGLI 452

SATARA 478

SINDHUDURG 207

SOLAPUR 458

THANE 268

WARDHA 328

WASHIM 307

YAVATMAL 357

-----------------------------

total no. of district in state -18: Maharashtra = 35

-----------------------------


Crop_Year

District_Name

BISHNUPUR 150

CHANDEL 163

CHURACHANDPUR 150

IMPHAL EAST 129

IMPHAL WEST 124

SENAPATI 164

TAMENGLONG 118

THOUBAL 130

UKHRUL 139

-----------------------------

total no. of district in state -19: Manipur = 9

-----------------------------


Crop_Year

District_Name

EAST GARO HILLS 471

EAST JAINTIA HILLS 329

EAST KHASI HILLS 307

NORTH GARO HILLS 57

RI BHOI 305

SOUTH GARO HILLS 437

SOUTH WEST GARO HILLS 59

SOUTH WEST KHASI HILLS 35

WEST GARO HILLS 485

WEST JAINTIA HILLS 37

WEST KHASI HILLS 345

-----------------------------

total no. of district in state -20: Meghalaya = 11

-----------------------------


Crop_Year

District_Name

AIZAWL 179

CHAMPHAI 141

KOLASIB 178

LAWNGTLAI 58

LUNGLEI 184

MAMIT 107

SAIHA 69

SERCHHIP 41

-----------------------------

total no. of district in state -21: Mizoram = 8

-----------------------------


Crop_Year

District_Name

DIMAPUR 414

KIPHIRE 174

KOHIMA 430

LONGLENG 156

MOKOKCHUNG 435

MON 439

PEREN 178

PHEK 421

TUENSANG 393

WOKHA 455

ZUNHEBOTO 411

-----------------------------

total no. of district in state -22: Nagaland = 11

-----------------------------


Crop_Year

District_Name

ANUGUL 497

BALANGIR 518

BALESHWAR 383

BARGARH 462

BHADRAK 342

BOUDH 472

CUTTACK 478

DEOGARH 470

DHENKANAL 471

GAJAPATI 457

GANJAM 526

JAGATSINGHAPUR 351

JAJAPUR 418

JHARSUGUDA 393

KALAHANDI 497

KANDHAMAL 442

KENDRAPARA 342

KENDUJHAR 517

KHORDHA 438

KORAPUT 510

MALKANGIRI 380

MAYURBHANJ 526

NABARANGPUR 454

NAYAGARH 463

NUAPADA 477

PURI 342

RAYAGADA 518

SAMBALPUR 481

SONEPUR 436

SUNDARGARH 514

-----------------------------

total no. of district in state -23: Odisha = 30

-----------------------------


Crop_Year

District_Name

KARAIKAL 214

MAHE 89

PONDICHERRY 447

YANAM 126

-----------------------------

total no. of district in state -24: Puducherry = 4

-----------------------------


Crop_Year

District_Name

AMRITSAR 194

BARNALA 67

BATHINDA 184

FARIDKOT 143

FATEHGARH SAHIB 112

FAZILKA 25

FIROZEPUR 192

GURDASPUR 169

HOSHIARPUR 205

JALANDHAR 171

KAPURTHALA 123

LUDHIANA 185

MANSA 181

MOGA 149

MUKTSAR 184

NAWANSHAHR 127

PATHANKOT 26

PATIALA 186

RUPNAGAR 173

S.A.S NAGAR 76

SANGRUR 214

TARN TARAN 87

-----------------------------

total no. of district in state -25: Punjab = 22

-----------------------------


Crop_Year

District_Name

AJMER 409

ALWAR 436

BANSWARA 416

BARAN 417

BARMER 271

BHARATPUR 429

BHILWARA 446

BIKANER 337

BUNDI 422

CHITTORGARH 455

CHURU 272

DAUSA 384

DHOLPUR 391

DUNGARPUR 386

GANGANAGAR 402

HANUMANGARH 368

JAIPUR 409

JAISALMER 266

JALORE 379

JHALAWAR 419

JHUNJHUNU 340

JODHPUR 323

KARAULI 399

KOTA 388

NAGAUR 356

PALI 402

PRATAPGARH 90

RAJSAMAND 415

SAWAI MADHOPUR 419

SIKAR 363

SIROHI 411

TONK 436

UDAIPUR 458

-----------------------------

total no. of district in state -26: Rajasthan = 33

-----------------------------


Crop_Year

District_Name

EAST DISTRICT 178

NORTH DISTRICT 171

SOUTH DISTRICT 183

WEST DISTRICT 182

-----------------------------

total no. of district in state -27: Sikkim = 4

-----------------------------


Crop_Year

District_Name

ARIYALUR 130

COIMBATORE 542

CUDDALORE 464

DHARMAPURI 543

DINDIGUL 600

ERODE 571

KANCHIPURAM 405

KANNIYAKUMARI 254

KARUR 462

KRISHNAGIRI 341

MADURAI 495

NAGAPATTINAM 321

NAMAKKAL 529

PERAMBALUR 480

PUDUKKOTTAI 434

RAMANATHAPURAM 377

SALEM 571

SIVAGANGA 422

THANJAVUR 417

THE NILGIRIS 310

THENI 520

THIRUVALLUR 396

THIRUVARUR 300

TIRUCHIRAPPALLI 507

TIRUNELVELI 533

TIRUPPUR 143

TIRUVANNAMALAI 496

TUTICORIN 476

VELLORE 521

VILLUPURAM 494

VIRUDHUNAGAR 493

-----------------------------

total no. of district in state -28: Tamil Nadu = 31

-----------------------------


Empty DataFrame

Columns: [Crop_Year]

Index: []

-----------------------------

total no. of district in state -29: Telangana = 0

-----------------------------


Crop_Year

District_Name

DHALAI 293

GOMATI 61

KHOWAI 61

NORTH TRIPURA 294

SEPAHIJALA 57

SOUTH TRIPURA 293

UNAKOTI 62

WEST TRIPURA 291

-----------------------------

total no. of district in state -30: Tripura = 8

-----------------------------


Crop_Year

District_Name

AGRA 468

ALIGARH 479

ALLAHABAD 470

AMBEDKAR NAGAR 456

AMETHI 135

AMROHA 364

AURAIYA 465

AZAMGARH 525

BAGHPAT 372

BAHRAICH 533

BALLIA 474

BALRAMPUR 421

BANDA 472

BARABANKI 518

BAREILLY 496

BASTI 454

BIJNOR 433

BUDAUN 526

BULANDSHAHR 467

CHANDAULI 432

CHITRAKOOT 434

DEORIA 474

ETAH 502

ETAWAH 451

FAIZABAD 453

FARRUKHABAD 489

FATEHPUR 524

FIROZABAD 491

GAUTAM BUDDHA NAGAR 345

GHAZIABAD 381

... ...

KHERI 533

KUSHI NAGAR 507

LALITPUR 463

LUCKNOW 497

MAHARAJGANJ 480

MAHOBA 443

MAINPURI 471

MATHURA 427

MAU 450

MEERUT 410

MIRZAPUR 481

MORADABAD 483

MUZAFFARNAGAR 436

PILIBHIT 461

PRATAPGARH 467

RAE BARELI 531

RAMPUR 468

SAHARANPUR 420

SAMBHAL 83

SANT KABEER NAGAR 449

SANT RAVIDAS NAGAR 395

SHAHJAHANPUR 529

SHAMLI 66

SHRAVASTI 444

SIDDHARTH NAGAR 402

SITAPUR 543

SONBHADRA 473

SULTANPUR 506

UNNAO 526

VARANASI 452


[75 rows x 1 columns]

-----------------------------

total no. of district in state -31: Uttar Pradesh = 75

-----------------------------


Crop_Year

District_Name

ALMORA 350

BAGESHWAR 343

CHAMOLI 351

CHAMPAWAT 415

DEHRADUN 453

HARIDWAR 357

NAINITAL 437

PAURI GARHWAL 379

PITHORAGARH 376

RUDRA PRAYAG 316

TEHRI GARHWAL 366

UDAM SINGH NAGAR 396

UTTAR KASHI 357

-----------------------------

total no. of district in state -32: Uttarakhand = 13

-----------------------------


Crop_Year

District_Name

24 PARAGANAS NORTH 460

24 PARAGANAS SOUTH 431

BANKURA 626

BARDHAMAN 603

BIRBHUM 568

COOCHBEHAR 573

DARJEELING 573

DINAJPUR DAKSHIN 397

DINAJPUR UTTAR 597

HOOGHLY 425

HOWRAH 371

JALPAIGURI 633

MALDAH 561

MEDINIPUR EAST 347

MEDINIPUR WEST 637

MURSHIDABAD 591

NADIA 580

PURULIA 640

-----------------------------

total no. of district in state -33: West Bengal = 18

-----------------------------



enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 5


----------------------------------------------------

Production in India (2000 to 2010)

-------------------------------------------------------


[01] Production in year 2000 = 1883519069.1

[02] Production in year 2001 = 1955689097.27

[03] Production in year 2002 = 1958751431.84

[04] Production in year 2003 = 2010500154.33

[05] Production in year 2004 = 2161040382.86

[06] Production in year 2005 = 1689035541.54

[07] Production in year 2006 = 2598469881.78

[08] Production in year 2007 = 1216119801.48

[09] Production in year 2008 = 1887112471.66

[10] Production in year 2009 = 1969812788.81

[11] Production in year 2010 = 1000088480.41

-------------------------------------------------------



enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 6


----------------------------------------------------

Area of production in India (2000 to 2010)

-------------------------------------------------------


[01] Area of production in year 2000 = 157470764.0

[02] Area of production in year 2001 = 157316957.67

[03] Area of production in year 2002 = 149786100.21

[04] Area of production in year 2003 = 164353080.54

[05] Area of production in year 2004 = 160911265.73

[06] Area of production in year 2005 = 155857115.32

[07] Area of production in year 2006 = 164304587.65

[08] Area of production in year 2007 = 145658432.3

[09] Area of production in year 2008 = 164283774.0

[10] Area of production in year 2009 = 159606419.0

[11] Area of production in year 2010 = 169646509.92

-------------------------------------------------------



enter:

[0] for exit

[1] for continue : 1

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 7


In [10]: main()

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 8


----------------------

Estimated coefficients for area:

----------------------


b_0 = -10519.272727272726

b_1 = 6.036363636363636

----------------------



----------------------------------------------------------

production area growth according to prediction model

--------------------------------------------------------


Production area gowth in 2011 = 2.28702640643 %

Production area gowth in 2012 = 2.66819747417 %

Production area gowth in 2013 = 3.04936854191 %

Production area gowth in 2014 = 3.43053960964 %

Production area gowth in 2015 = 3.81171067738 %

Production area gowth in 2016 = 4.19288174512 %

Production area gowth in 2017 = 4.57405281286 %

Production area gowth in 2018 = 4.9552238806 %

Production area gowth in 2019 = 5.33639494834 %

Production area gowth in 2020 = 5.71756601607 %

Production area gowth in 2021 = 6.09873708381 %

Production area gowth in 2022 = 6.47990815155 %

Production area gowth in 2023 = 6.86107921929 %

Production area gowth in 2024 = 7.24225028703 %

Production area gowth in 2025 = 7.62342135476 %

--------------------------------------------------------



In [11]: main()

-----------------------------------------

Main menu (Agriculture Data Aanlysis) :

-----------------------------------------


[1] Print dimension of the data file

[2] Print column names of the data file

[3] Print available states in the data

[4] Print districts of all states

[5] Print production data

[6] Print production area data

[7] Plot area and production (without prediction)

[8] Area prediction model and print growth rate

[9] Production prediction model and print growth rate

---------------------------------------


enter your option : 9


----------------------

Estimated coefficients for production:

----------------------


b_0 = 17176.454545318742

b_1 = -7.509090909023176

----------------------



----------------------------------------------------------

Production growth according to prediction model

--------------------------------------------------------


Production gowth in 2011 = -2.12448559669 %

Production gowth in 2012 = -2.47856652947 %

Production gowth in 2013 = -2.83264746225 %

Production gowth in 2014 = -3.18672839503 %

Production gowth in 2015 = -3.54080932781 %

Production gowth in 2016 = -3.8948902606 %

Production gowth in 2017 = -4.24897119338 %

Production gowth in 2018 = -4.60305212616 %

Production gowth in 2019 = -4.95713305894 %

Production gowth in 2020 = -5.31121399172 %

Production gowth in 2021 = -5.6652949245 %

Production gowth in 2022 = -6.01937585728 %

Production gowth in 2023 = -6.37345679007 %

Production gowth in 2024 = -6.72753772285 %

Production gowth in 2025 = -7.08161865563 %

--------------------------------------------------------



In [12]: